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B S T R A C T

aves in large lakes put coastal communities and vessels under threat, and accurate wave predictions are needed for early warnings. While physics-based
umerical wave models such as WAVEWATCH III (WW3) are useful to provide spatial information to supplement in situ observations, they require intensive
omputational resources. An attractive alternative is machine learning (ML) methods, which can potentially improve the performance of numerical wave models,
hile only requiring a small fraction of the computational cost. In this study, we applied novel ML methods based on XGBoost and a Long Short-Term Memory

LSTM) recurrent neural network for predicting wave height and period under the near-idealized wave growth conditions of Lake Erie. Data sets of significant
ave height (𝐻), peak wave period (𝑇𝑝) and surface wind from two offshore buoys from 1994 to 2017 were processed for model training and testing. We trained
nd validated the ML models with the data sets from 1994 to 2015, and then used the trained models to predict significant wave height and peak period for 2016
nd 2017. The XGBoost model yielded the best overall performance, with Mean Absolute Percentage Error (MAPE) values of 15.6%–22.9% in 𝐻 and 8.3%–13.4%

in 𝑇𝑝. The LSTM model yielded MAPE values of 23.4%–30.8% in 𝐻 and 9.1%–13.6% in 𝑇𝑝. An unstructured grid WW3 applied to Lake Erie yielded MAPE values
of 15.3%–21.0% in 𝐻 and 12.5%–19.3% in 𝑇𝑝. However, WW3 underestimated 𝐻 and 𝑇𝑝 during strong wind events, with relative biases of -11.76% to -14.15%
in 𝐻 and -15.59% to -19.68% in 𝑇𝑝. XGBoost and LSTM improve on these predictions with relative biases of -2.56% to -10.61% in 𝐻 and -8.08% to -10.13%
in 𝑇𝑝. An ensemble mean of these three models yielded lower scatter scores than the members, with MAPE values of 13.3%–17.3% in 𝐻 and 8.0%–13.0% in 𝑇𝑝,
although it did not improve the bias. The ML models ran significantly faster than WW3: For this 2-year run on the same computing environment, WW3 needed
24 h with 60 CPUs, whereas the trained LSTM needed 0.24 s on 1 CPU, and the trained XGBoost needed only 0.03 s on 1 CPU.
. Introduction

Accurate predictions of wave conditions are important for the off-
hore industry, shipping, and for mitigating coastal hazards such as
une erosion. Various wave models have been developed and imple-
ented in ocean and coastal regions. Following Mahjoobi and Etemad-

hahidi (2008) and Pirhooshyaran et al. (2020), these can be divided
nto three broad categories, namely (i) physics-based models, which
eature parameterizations of the wave action balance equation, (ii)
tatistical and machine learning models (hereafter ML models, also
nown as soft computing methods) which instead use the data structure
or prediction, without explicit description of physics, and (iii) hybrid
pproaches, which combine the first two categories.

Physics-based models have been developed during the course of
hree generations, starting with simple parameterizations of the rela-
ionships between wind, wave height and wave period, to the current
hird generation in which four-wave nonlinear interaction and vari-
us other source terms are explicitly modeled in frequency-directional
pace, e.g. WAM (WAMDI Group, 1988), SWAN (Booij et al., 1999)
nd WAVEWATCH III (hereafter WW3, Tolman et al., 2002). For Lake
rie, one of the five Great Lakes, first- and second-generation physics-
ased wave models used simple parameterization to account for the

∗ Corresponding author.
E-mail address: andre.vanderwesthuysen@noaa.gov (A.J. van der Westhuysen).

evolution of wave height and period due to wind forcing (Schwab et al.,
1984). Third-generation wave models such as SWAN and MIKE21 SW
(Sørensen et al., 2004), which explicitly represent three- and four-wave
interactions, have subsequently been applied to Lake Erie (Moeini and
Etemad-Shahidi, 2007). A coupled wave-hydrodynamic model based on
the unstructured grid Finite Volume Community Ocean Model FVCOM
(Chen et al., 2013) and a third-generation wave model based on SWAN
(Qi et al., 2009) was applied to Lake Erie to investigate wave climatol-
ogy and inter-basin wave interactions (Niu and Xia, 2016). Alves et al.
(2014) implemented the third-generation WW3 model as the dynamical
core of the National Oceanic and Atmospheric Administration’s (NOAA)
Great Lakes operational wave forecasting system.

While physics-based wave models generally provide satisfactory
results in comparison with observations, the physics they embody are
known to underperform under highly nonlinear, extreme events such as
storm peaks (e.g. Alves et al., 2014). Furthermore, a practical problem,
especially in an operational environment, is their high computational
expense.

Statistical and ML models (soft computing methods) were first
applied to significant wave height prediction by Deo and Sridhar Naidu
(1999), Deo et al. (2001) and Agrawal and Deo (2002). These re-
searchers applied small, fully-connected, feed-forward artificial neural
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Fig. 1. Schematics of machine learning models considered in this study. Input or output locations denoted by subscripts. Time levels denoted by superscripts in brackets. Input
samples used in ensemble members denoted by superscripts in parentheses.
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networks (ANNs), as well as autoregressive moving average (ARMA)
or autoregressive integrated moving average (ARIMA) stochastic time
series models to predict waves at point locations using as input previous
wave conditions (univariate modeling) or wind observations (multivari-
ate modeling). Mandal and Prabaharan (2006) introduced the use of
recurrent neural networks (RNNs) to wave forecasting. They applied an
RNN to predict significant wave heights based on a time series history
of observed significant wave heights. More recently, Srinivasan et al.
(2017) compared feed-forward networks and RNNs in the context of
multivariate wave modeling, using observed wind as input, and found
the RNNs to have better skill. All these studies applied neural networks
with only one hidden layer, and limited data sets of only 1–2 years.

Mahjoobi and Etemad-Shahidi (2008) and Etemad-Shahidi
and Mahjoobi (2009) introduced the use of single classification and
regression trees (using C5.0, CART and M5’ training algorithms) as
an alternative to neural network-based approaches. The former study
considered 5 years of wind and wave data on Lake Michigan from the
National Data Buoy Center (NDBC) station 45007. The authors found
better performance for regression trees than classification trees, and
that ANNs performed slightly better than either tree model. The authors
note that, as with ANNs, tree models do not require knowledge of
the underlying physical process to make predictions. However, they
provide more insight into the problem than ANNs, since they represent
understandable rules. Mahjoobi et al. (2008) and Malekmohamadi et al.
(2011) compared a range of other ML approaches, including Support
Vector Machines, Bayesian Networks, Fuzzy Inference Systems, and
Adaptive Neuro-Fuzzy Inference Systems to ANNs in Lake Ontario
and Lake Superior. They found comparable accuracy between these
alternative methods and ANNs, except for Bayesian networks, which
performed poorly. However, it should be noted that the wind and wave
data used in their study covered less than two years, and the ANN used
had only one hidden layer with three neurons.

Recent years have seen breakthroughs in the development of ML
training algorithms, hardware, and a massive increase in data. Peres

et al. (2015) used observed winds (𝑢, 𝑣) at or near three coastal wave f
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buoy stations as input, and observed significant wave heights (𝐻) as
output, to train a single hidden-layer, fully-connected, feed-forward
neural network for each station (Fig. 1a). The data set covered a 20-year
period from 1989 to 2008. The model input included observed wind
from locations upwind of the output station as well as at time lags,
to account for the fetch and duration in wind-wave generation. James
et al. (2018) trained a fully-connected, feed-forward neural network
to produce a field of coastal wave heights 𝐻1–𝐻𝑛, using as input
three offshore wave characteristics (height 𝐻 , period 𝑇 , and direction
𝐷), a 12 × 2 field of wind vectors (𝑢, 𝑣), a 357 × 2 field of ocean
currents (�̃�, �̃�), and wave height fields from SWAN simulations as
arget variables (Fig. 1b). Recently, Feng et al. (2020) used fully-
onnected, a feed-forward neural network to model waves in Lake
ichigan. A number of more complex neural network applications have

urthermore been proposed: Mahmoodi et al. (2017) compared feed-
orward and cascade-forward networks, but found better performance
n the former. Kumar et al. (2018) investigated the use of ensembles
f Extreme Learning Machines to reduce the variation caused by ran-
om initialization. Prahlada and Deka (2015) and Dixit and Londhe
2016) combined ANNs with wavelet analysis to better model extreme
ave events. Pirhooshyaran and Snyder (2020) introduced the use
f sequence-to-sequence networks for the prediction wave height and
utput power, feature selection, and the reconstruction of missing wave
bservations using data from nearby stations. Pirhooshyaran et al.
2020) expanded this work by including an ensemble of sequence-
o-sequence networks, introducing a new resampling technique and
mproving feature selection. They demonstrate the superiority of this
pproach as the forecast lead time increases.

Hybrid approaches combine the strengths of physics-based models
nd ML. This includes the use of ML models to perform data assimila-
ion on the output of physics-based models (e.g. Makarynskyy, 2006;
ondhe et al., 2016), and the creation of nonlinear ensemble means
e.g. Campos et al., 2020).

In the present study, we investigate two different ML approaches

or learning the nonlinear relationships between observed wind data,
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Fig. 2. Lake Erie bathymetry shown by contour lines (meters). Green dots are the NDBC buoys 45005 and 45142.
significant wave height and peak wave period, with the aim to cor-
rect the underprediction of the latter two quantities by physics-based
spectral wave models, in particular at storm peaks. The first is an
ensemble tree-based model, XGBoost (Chen and Guestrin, 2016), which
is based on the Random Forest model (Breiman, 2001). XGBoost is an
optimized, distributed gradient boosting library designed to be highly
efficient, flexible, and portable. It provides a parallel tree boosting
that solves many data science problems, such as regression (e.g. Qian
et al., 2020) and classification (e.g. Merembayeva et al., 2019), fast
and accurately. XGBoost has built-in L1 and L2 regularization which
prevents the model from overfitting. It is furthermore robust, having a
capability to handle missing values. The second model is from the RNN
family, used here to capture the dependency of significant wave height
and peak wave period on the time series structure of recently-observed
winds. Specifically, we applied the Long Short-Term Memory (LSTM,
Hochreiter and Schmidhuber, 1997), implemented using the Keras
high-level framework with a TensorFlow backend (Chollet, 2017). To
compare with physics-based models, we include simulations with the
unstructured mode of WW3 (Roland and Ardhuin, 2014). The field
case considered here is Lake Erie, which is an enclosed basin, with a
wind climate directed along its major axis. Hourly metocean data are
available at NDBC stations 45005 and 45142 at opposite ends of the
fetch, for the period 1994–2017. It therefore represents near-idealized
conditions under which to compare the modeling of wind-wave growth
by ML and physics-based models. The XGBoost (Fig. 1c) and LSTM
(Fig. 1d) models were trained using observed wind (𝑢, 𝑣), significant
wave height 𝐻 and peak wave period 𝑇𝑝 at these two data buoys
(Fig. 2), and subsequently evaluated against holdout data and the
physics-based model WW3.

This paper is structured as follows: Section 2 describes the field
case and data set used to train and evaluate the two ML models.
Sections 3 and 4 provide details of respectively the XGBoost and LSTM
models. Section 5 describes the physics-based WW3 model and the
configuration applied here. In Section 6, the performance of the two ML
models and WW3, as well as their ensemble mean, are intercompared,
and in Section 7 model sensitivity is investigated. Section 8 closes with
conclusions drawn from these results.

2. Field case data set

The field case considered here for the training and evaluation of
our ML models is Lake Erie, one of the Great Lakes that is shared
between the United States and Canada (Fig. 2). Lake Erie is narrow,
with a length of 338 km and a width of 92 km, and has a WSW-ENE
orientation. It is relatively shallow, with a maximum depth of 64 m,
but with mean depths of only 7.3 m in the western basin, 18.3 m
in the central basin, and 24.4 m in the eastern basin. Lake Erie has

several offshore buoys as part of its observational network, of which

3

two have collected continuous hourly data from 1994 to 2017 during
the ice-free spring, summer and fall seasons. Located on the western
end of the lake, near Toledo, OH is station 45005 (9.8 m depth),
maintained by NOAA’s National Data Buoy Center (NDBC). Located on
the eastern end of the lake, near Buffalo, NY is station 45142 (27 m
depth), maintained by the Environment and Climate Change Canada.
The historical and real-time measurements from these two offshore
buoys are available from NDBC (2020). This data was cleaned by (i)
dropping records where the wind speed, significant wave height and
peak wave period were not available simultaneously (as required for
training and evaluation), (ii) dropping records where the significant
wave height is very low (<0.05 m) indicating low-energy noise, and
(iii) dropping records where the peak wave period had a quality flag of
> 1 (indicating doubtful or erroneous values) or an unphysical value for
this small lake (>14 s). In addition, based on visual inspection, some
years were excluded due to the doubtful quality of the peak period
observations at station 45142, namely 1996, 2003–2006, and 2010.

Figs. 3 to 5 show the distributions of the cleaned monthly significant
wave height, peak wave period, and wind speed during the 24-year
observational period considered. Fig. 6 shows the observed wind cli-
mate in terms of wind roses at NDBC buoys 45005 and 45142. From
Fig. 3 we can see that the distribution of significant wave heights is
strongly skewed to the right (higher values), with the third quartile
below 1.5 m, but with outliers (representing storm peaks) of up to 5.2
m. There is clear seasonality present, with the largest significant wave
heights recorded in spring (April–May) and fall (October–November).
Similarly, Fig. 4 shows peak wave periods to be skewed to the right
and display seasonality, with the highest values recorded in the spring
and fall. Fig. 5 shows that this is correlated to similar seasonal wind
speed magnitude patterns, which is to be expected considering that
all wind wave conditions in this shallow lake are locally generated.
Figs. 3 and 4 furthermore show that extreme significant wave heights
and peak periods tend to be higher at station 45142 than station
45005. Considering that the dominant wind direction is from the WSW-
SSW (Fig. 6), these larger wave heights are due to the longer fetch
available to the downwind station 45142. Note that the extreme depth
limitation of 7.3 m at station 45005 also imposes a depth limitation
to the maximum possible wave height, which is relaxed at the deeper
buoy 45142.

The input variables that were selected to construct our ML models
are firstly the observed wind speed and direction at stations 45005 and
45142. These are transformed into the wind vector components 𝑢 and
𝑣 at each station. Second, following Peres et al. (2015), we add lags
of these wind vectors to capture storm duration. Considering the 338
km length of the lake, and a maximum observed wind speed of 20.6
m/s during the study period, fully developed waves would be generated
after a duration of about 24 h (following Bretschneider, 1958). There-
fore, lags at 3-hourly intervals of up to 24 h were included. The exact

number of lags included was determined as part of hyperparameter
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Fig. 3. Monthly distributions of significant wave height during the ice-free months (April–December). Top panel: NDBC 45005; Bottom panel: NDBC 45142.
Fig. 4. Monthly distributions of peak wave period during the ice-free months (April–December). Top panel: NDBC 45005; Bottom panel: NDBC 45142.
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uning (see below). This yields a maximum of 18 input variables per
bservation station, or 18 × 2 in total. The observed significant wave
eight and peak wave period at stations 45005 and 45142 are used
s the output (target) variables. Note that in general wave conditions
re also affected by lake ice coverage and thickness, and hence lake
urface temperature, which could serve as additional input variables.
owever, here we only consider wave growth during ice-free months

April to early December), so that these variables are not included.
In order to train and evaluate our ML models on this data, we

plit the data set into training, validation and test partitions. Con-
idering that these are time series data, in which serial correlation
xists between successive observations, the usual approach of random
ssignment to the three partitions is not followed. Instead, continuous
 2

4

eriods of the time series are assigned to each partition (e.g. Peres
t al., 2015). The bulk of the data set, namely the years 1994–2012, is
ssigned to the training partition, in order to achieve reliable estimates
f the trainable model parameters. Next, the years 2014–2015 are
ssigned to the validation partition, which is used in the selection of
odel hyperparameters such as tree depth and to check for overfitting

n the training data. Finally, the years 2016–2017 are assigned to the
est partition. This latter portion of the data set will be used to test
ow well the ML models generalize to unseen conditions at the two
ocations for which they were trained. The test partition will also be
sed to assess the performance of the physics-based model WW3 at
hese two stations. The resulting split between the three partitions is
8 154 records for training, 5 193 for validation, and 4 493 for testing,
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Fig. 5. Monthly distributions of 𝑈10 wind speed during the ice-free months (April–December). Top panel: NDBC 45005; Bottom panel: NDBC 45142.
Fig. 6. Wind roses for NDBC 45005 (left) and NDBC 45142 (right). Color classes indicate wind speed (m/s). Radial distance indicates percentage occurrence.
or about 74%:14%:12%. Fig. 7 compares the distribution of observed
significant wave height and peak wave period in the train, validation
and test partitions at stations 45005 and 45142. We can see that the
median and interquartile distributions are similar between the training,
validation and test partitions. However, we note that in terms of peak
events (outliers), the test partition is less energetic than the train and
validation partitions.

3. XGBoost model

3.1. Model description

XGBoost (Chen and Guestrin, 2016) is mostly used for supervised
learning problems, where one uses training data to predict a target vari-
able. XGBoost implements ML algorithms under the Gradient Boosting
framework. It uses the same tree ensemble model as the Random Forest
model (Breiman, 2001), consisting of a set of classification or regression
5

trees. Random Forest and boosted trees are basically the same models;
the only difference is how one trains them.

Mathematically, an ensemble tree model can be written in the form
(e.g. Chen and Guestrin, 2016):

�̂�𝑖 =
𝐾
∑

𝑘=1
𝑓𝑘(𝐱𝑖), 𝑓𝑘 ∈ 𝐹 (1)

where 𝐾 is the number of trees, and 𝑓 (𝐱) is a tree function in the
function space 𝐹 =

{

𝑓 (𝐱) = 𝑤𝑞(𝐱)
}

. The data set 𝐷 =
{

(𝐱𝑖, 𝑦𝑖)
}

has 𝑛
examples and 𝑚 features (𝐱𝑖 ∈ R𝑚, 𝑦𝑖 ∈ R). The structure of each tree is
given by 𝑞, which maps an example 𝐱𝑖 to the corresponding leaf index.
Each tree function 𝑓𝑘 corresponds to a structure 𝑞 and leaf weights 𝑤,
for a total of 𝑇 leaves.

The objective/loss function with parameters 𝜃 to be optimized is
given by

𝐿(𝜃) =
∑

𝑙
(

𝑦𝑖, �̂�𝑖
)

+
∑

𝛺(𝑓𝑘) (2)

𝑖 𝑘
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Fig. 7. Distribution of significant wave height and peak wave period in the training, validation, and test partitions at NDBC stations 45005 (left) and 45142 (right).
𝐿

where 𝑙 is a differentiable convex loss function that measures the
difference between the prediction �̂�𝑖 and the target 𝑦𝑖. 𝛺(𝑓 ) is the
regularization term, which penalizes the complexity of the model.

Gradient tree boosting is achieved by training the model in an
additive manner—tree functions 𝑓𝑡 are greedily added to successive
iterations to minimize the loss function (2). Let �̂�𝑡−1𝑖 and �̂�𝑡𝑖 be the
redictions at iterations (𝑡 − 1) and 𝑡, respectively, of the 𝑖th instance.
etting �̂�𝑡𝑖 = �̂�𝑡−1𝑖 + 𝑓𝑡(𝐱𝑖), the loss function at the 𝑡th iteration will be:

𝑡 =
𝑛
∑

𝑖=1
𝑙
(

𝑦𝑖, �̂�
𝑡−1
𝑖 + 𝑓𝑡(𝐱𝑖)

)

+𝛺(𝑓𝑡) (3)

Recalling the Taylor expansion 𝑓 (𝑥 + 𝛥𝑥) = 𝑓 (𝑥) + 𝑓 ′(𝑥)𝛥𝑥 +
1
2𝑓

′′(𝑥)𝛥𝑥2, we obtain

𝑙
(

𝑦𝑖, �̂�
𝑡−1
𝑖 + 𝑓𝑡(𝐱𝑖)

)

= 𝑙
(

𝑦𝑖, �̂�
𝑡−1
𝑖

)

+ 𝑔𝑖𝑓𝑡(𝐱𝑖) +
1
2
ℎ𝑖𝑓

2
𝑡 (𝐱𝑖) (4)

Then we have

𝐿𝑡 ≃
𝑛
∑

𝑖=1

[

𝑙
(

𝑦𝑖, �̂�
𝑡−1
𝑖

)

+ 𝑔𝑖𝑓𝑡(𝐱𝑖) +
1
2
ℎ𝑖𝑓

2
𝑡 (𝐱𝑖)

]

+𝛺(𝑓𝑡) + constant (5)

where 𝑔𝑖 = 𝜕 𝑡−1 𝑙
(

𝑦𝑖, �̂�𝑡−1
)

and ℎ𝑖 = 𝜕2 𝑙
(

𝑦𝑖, �̂�𝑡−1
)

.
�̂�𝑖 𝑖 �̂�𝑡−1𝑖
𝑖

6

Define the penalty on the complexity of the model with the reg-
ularization term 𝛺(𝑓 ) = 𝛾𝑇 + 1

2𝜆
∑𝑇

𝑗=1 𝑤
2
𝑗 , with 𝑇 the number of

leaves. Then, with constant terms removed, the simplified objective
(loss function) at iteration 𝑡 is:

𝐿𝑡 ≃
𝑛
∑

𝑖=1

[

𝑔𝑖𝑓𝑡(𝐱𝑖) +
1
2
ℎ𝑖𝑓

2
𝑡 (𝐱𝑖)

]

+ 𝛾𝑇 + 1
2
𝜆

𝑇
∑

𝑗=1
𝑤2

𝑗 (6)

Define the instance set of leaf 𝑗 as 𝐼𝑗 =
{

𝑖|𝑞(𝐱𝑖) = 𝑗
}

, then

𝑡 ≃
𝑇
∑

𝑗=1

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

∑

𝑖∈𝐼𝑗

𝑔𝑖
⎞

⎟

⎟

⎠

𝑤𝑗 +
1
2

⎛

⎜

⎜

⎝

∑

𝑖∈𝐼𝑗

ℎ𝑖 + 𝜆
⎞

⎟

⎟

⎠

𝑤2
𝑗

⎤

⎥

⎥

⎦

+ 𝛾𝑇 (7)

Define 𝐺𝑗 =
∑

𝑖∈𝐼𝑗 𝑔𝑖 and 𝐻𝑗 =
∑

𝑖∈𝐼𝑗 ℎ𝑖 then

𝐿𝑡 ≃
𝑇
∑

𝑗=1

[

𝐺𝑗𝑤𝑗 +
1
2
(

𝐻𝑗 + 𝜆
)

𝑤2
𝑗

]

+ 𝛾𝑇 (8)

And then

argmin
𝐱

(𝐿) = −1
2

𝑇
∑

𝑗=1

𝐺2
𝑗

𝐻𝑗 + 𝜆
+ 𝛾𝑇 (9)

where the optimal weight 𝑤∗ of leaf 𝑗 is given by 𝑤∗ = −
𝐺2
𝑗 .
𝑗 𝑗 𝐻𝑗+𝜆
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Fig. 8. Time series of the XGBoost significant wave height predictions for the unseen test partition (2016–2017). Top panels: NDBC 45005; Bottom panels: NDBC 45142.
In summary, the boosted tree algorithm is the following:

1. Add a new tree in each iteration.
2. At the beginning of each iteration, calculate: 𝑔𝑖 = 𝜕�̂�𝑡−1𝑖

𝑙
(

𝑦𝑖, �̂�𝑡−1𝑖
)

and ℎ𝑖 = 𝜕2
�̂�𝑡−1𝑖

𝑙
(

𝑦𝑖, �̂�𝑡−1𝑖
)

.

3. Use the statistics to greedily grow a tree 𝑓𝑡(𝐱) with 𝐿 = − 1
2
∑𝑇

𝑗=1
𝐺2
𝑗

𝐻𝑗+𝜆
+ 𝛾𝑇 .

4. Add 𝑓 (𝐱) to the model �̂�𝑡𝑖 = �̂�𝑡−1𝑖 + 𝜀𝑓𝑡(𝐱𝑖), where 𝜀 is called
shrinkage.

3.2. Configuration and hyperparameter tuning

The XGBoost model used hourly wind, significant wave height and
peak wave period from observations at the buoy stations in western
(45005) and eastern (45142) Lake Erie (Fig. 2). The observed wind
speed and direction at the two stations were used as input 𝑋𝑖, and
ignificant wave height and peak wave period were used as model
utput 𝑦𝑖. For this regression problem, we set the learning objective
s regression with squared loss.

Three hyperparameters were optimized in the XGBoost model,
amely: 𝑇𝐷 = Maximum Tree Depth, 𝑊 = Minimum Child Weight,
7

and 𝐸 = learning rate (eta). Considering the limited number of hyper-
parameters, a direct search strategy was followed for the optimization:
The search space was defined as 𝑇𝐷 = [5, 6, 7, 8, 9, 10, 11, 12], 𝑊 =
[3, 4, 5, 6, 7, 8], and 𝐸 = [0.005, 0.01, 0.05, 0.1, 0.2]. One parameter was
tuned at a time (with other parameters fixed) until all parameters were
tuned. The process was repeated three times. Mean Absolute Percentage
Error (MAPE) was set as the metric for training and the Mean Absolute
Error (MAE) as the evaluation metric for cross validation. Table 1 shows
that model accuracy improved with increasing maximum tree depth 𝑇𝐷
up to 10, but was quite insensitive to the minimum child weight 𝑊 . The
combination of 𝑇𝐷=10 and 𝑊 = 5 yielded a minimum MAE = 0.07466
m. Table 2 shows that the optimal learning rate 𝐸 = 0.05 yielded a
minimum MAE = 0.0747 m. This model training ran on a CPU (Intel®
Xeon® CPU E2176M @ 2.70 GHz) for about 3 min per hyperparameter
combination, and it converged at around 4 000 epochs.

3.3. XGBoost results

The trained XGBoost model was used to predict wind-wave condi-
tions for the unseen test period of 2016–2017. It needed only 0.03 s
for this prediction, using 1 CPU. Figs. 8 and 9 show the time series
and error statistics. The prediction for station 45005 yielded a MAE
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Fig. 9. Time series of the XGBoost peak wave period predictions for the unseen test partition (2016–2017). Top panels: NDBC 45005; Bottom panels: NDBC 45142.
able 1
yperparameter tuning results on the validation partition (MAE, m) for XGBoost along

he dimensions of 𝑇𝐷 = Max Tree Depth and 𝑊 = Minimum Child Weight, for a fixed
optimal learning rate 𝐸 = 0.05. Optimal settings shown in bold.

W TD

5 6 7 8 9 10 11 12

3 0.07672 0.07605 0.07552 0.07508 0.07492 0.07475 0.07482 0.07495
4 0.07673 0.07606 0.07551 0.07508 0.07493 0.07471 0.07475 0.07475
5 0.07675 0.07605 0.07554 0.07509 0.07491 0.07466 0.07468 0.07472
6 0.07673 0.07608 0.07546 0.07509 0.07485 0.07475 0.07467 0.07471
7 0.07671 0.07607 0.07556 0.07512 0.07486 0.07477 0.07476 0.07479
8 0.07677 0.07609 0.07557 0.07517 0.07483 0.07479 0.07475 0.07478

of 0.074 m in 𝐻 and 0.309 s in 𝑇𝑝, with maximum absolute errors of
0.853 m and 2.613 s respectively. This corresponds to MAPE values of
15.611% in 𝐻 and 8.322% in 𝑇𝑝. The downwind station 45142 yielded
larger errors, namely a MAE of 0.100 m in 𝐻 and 0.516 s in 𝑇𝑝, with
maximum absolute errors of 1.045 m and 3.774 s respectively. This
corresponds to larger MAPE values of 22.890% in 𝐻 and 13.445% in
𝑇𝑝. Scatterplot comparisons with other the models will be discussed in
Section 6.
8

Table 2
Hyperparameter tuning results on the validation partition (MAE, m) for XGBoost along
the dimensions of 𝐸 = learning rate (eta), for a fixed optimal Max Tree Depth 𝑇𝐷 =
10 and Minimum Child Weight 𝑊 = 5. Optimal settings shown in bold.

E MAE

0.005 0.1368
0.010 0.0889
0.050 0.0747
0.100 0.0759
0.200 0.0783

4. Long Short-Term Memory (LSTM) model

4.1. Model description

Our second model is a specialized class of artificial neural network,
namely a Recurrent Neural Network (RNN). This class of network dif-
fers from the standard feed-forward type in that the time dependency of
the input variables is explicitly modeled. RNN models are composed of
a sequence of identical neural network cells, each one representing one
time step. Each of these units passes its nonlinear activation to the unit
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Fig. 10. Architecture of the 4-layer LSTM network.
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of the next time step, thus allowing a system memory to build up. This
system memory is useful for modeling sequences such as time series
of physical phenomena and natural language. As motivated by the
early work of Mandal and Prabaharan (2006), RNNs are therefore well-
suited to the problem of wave height prediction, a phenomenon that
is known to depend on a time series history of winds. Here we apply
a popular variety of the RNN, namely the Long Short-Term Memory
(LSTM) network by Hochreiter and Schmidhuber (1997). The structure
of one cell of the LSTM is expressed in the following set of equations
(see Olah (2015) and Chollet (2017) for graphical representations):

𝑓 ⟨𝑡⟩ = 𝜎
(

𝐖𝑓

[

𝑎⟨𝑡−1⟩, 𝑥⟨𝑡⟩
]

+ 𝐛𝑓
)

(10)

𝑖⟨𝑡⟩ = 𝜎
(

𝐖𝑖

[

𝑎⟨𝑡−1⟩, 𝑥⟨𝑡⟩
]

+ 𝐛𝑖
)

(11)

⟨𝑡⟩ = 𝜎
(

𝐖𝑜

[

𝑎⟨𝑡−1⟩, 𝑥⟨𝑡⟩
]

+ 𝐛𝑜
)

(12)

𝑐⟨𝑡⟩ = tanh
(

𝐖𝑐

[

𝑎⟨𝑡−1⟩, 𝑥⟨𝑡⟩
]

+ 𝐛𝑐
)

(13)

⟨𝑡⟩ = 𝑖⟨𝑡⟩ ∗ 𝑐⟨𝑡⟩ + 𝑓 ⟨𝑡⟩ ∗ 𝑐⟨𝑡−1⟩ (14)

⟨𝑡⟩ = 𝑜⟨𝑡⟩ ∗ tanh
(

𝑐⟨𝑡⟩
)

(15)

The input to the LSTM consists of a time series vector 𝐱 =
[

𝑥⟨1⟩,
𝑥⟨2⟩,… , 𝑥⟨𝑇 ⟩

]

, for 𝑡 = 1… 𝑇 time steps in the series. The vector 𝐚 =
[

𝑎⟨1⟩, 𝑎⟨2⟩,… , 𝑎⟨𝑇 ⟩
]

represents the network activation that is passed from
ne time step to the next, thus representing the short-term memory of
he system. A second, longer-term memory is represented by the vector
=

[

𝑐⟨1⟩, 𝑐⟨2⟩,… , 𝑐⟨𝑇 ⟩
]

, which is also passed from one time step to the
next. The distinction is that 𝐜 (or the ‘carry state’) is not necessarily
updated at every time step, unlike the activation 𝐚. As such, 𝐜 can carry
information across several time steps, influencing model outputs based
on inputs much earlier in the time series. The updating of 𝐜 and its
nfluence on the activation 𝐚 is determined by a set of binary gates,
alled the ‘forget gate’ 𝑓 ⟨𝑡⟩ given by (10), the ‘update gate’ 𝑖⟨𝑡⟩ (11), and
he ‘output gate’ 𝑜⟨𝑡⟩ (12). In each of these expressions, 𝜎 is the sigmoid
unction, 𝐖 is the weight matrix and 𝐛 is the bias vector. At each
ime step, a candidate 𝑐⟨𝑡⟩ for updating the previous carry state 𝑐⟨𝑡−1⟩

s computed using (13). In (14), based on the outcomes of the update
nd forget gates, 𝑐⟨𝑡⟩ is then updated to the candidate 𝑐⟨𝑡⟩ or just takes
9

he same value as the previous carry state 𝑐⟨𝑡−1⟩, thus continuing the
ong-term memory. Finally, the new activation 𝑎⟨𝑡⟩ is computed based
n the value of the output gate and the current carry state 𝑐⟨𝑡⟩ using
15). The activation 𝑎⟨𝑡⟩ is then used to determine the output 𝑦⟨𝑡⟩ of
he given time step, via e.g. a Rectified Linear Unit (ReLU) or softmax
ctivation function. However, it is also passed forward to the next time
tep along with the carry state. This LSTM cell can thus be repeated for
ach time step in the sequence to be modeled, as will be shown in the
ext section.

To build our LSTM application in the Keras framework, the LSTM
ell described in the previous section was arranged in a time sequence
overing the 3-hourly time lags of wind observation going back to a
aximum of 24 h, namely 𝑡 = [−24, −21, −18, −15, −12, −9, −6, −3,
]. This results in a horizontal sequence of up to 9 LSTM units for the
ind input vectors 𝑥⟨𝑡⟩ to 𝑥⟨𝑇 ⟩. Each unit passes along its activation
⟨𝑡⟩ and carry status 𝑐⟨𝑡⟩ to the unit at the next time step (Fig. 10).
he maximum number of lags 𝑇 , which represents the duration of
ave generation, will be determined via hyperparameter optimization
elow.

Each wind input vector 𝑥⟨𝑡⟩ = [𝑢1, 𝑣1, 𝑢2, 𝑣2] contains the wind
elocity components at the two stations 45005 and 45142 at each time
ag. These input sequences were generated by moving a time window
hrough the data set, each time capturing a sequence of 𝑇 wind input
ectors. This results in a training data set with an input size of [𝑚𝑥,
, 𝑤] = [28 154, 𝑇 , 4], where 𝑚𝑥 is the number of training sequences
f length 𝑇 and 𝑤 = 4 the number of wind vector components. For
he validation and test partitions the corresponding input sizes are
5 193, 𝑇 , 4] and [4 493, 𝑇 , 4], respectively. At each time step 𝑡, a

series of four LSTM cells are stacked, each passing its activation to the
next, to increase complexity of the nonlinear relationships that can be
modeled. Each LSTM unit contains 𝑁 neurons, which is the second
hyperparameter to optimize. As described above, inputs are received
at each time step 𝑡 = 1… 𝑇 . The output, however, is only generated
at the last time step 𝑇 , corresponding to the current time at which an
estimate of the significant wave height is required. At this time step,
the activation of the fourth LSTM layer is passed to a four-neuron dense
layer with Rectified Linear Unit (ReLU) activations. This produces non-
negative regression outputs of the significant wave heights and peak

⟨𝑇 ⟩
periods 𝑦 = [𝐻1,𝐻2, 𝑇𝑝1, 𝑇𝑝2] at stations 45005 and 45142.
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Fig. 11. Training performance of the LSTM network in terms of MAPE (%) of the
training and validation partitions, for stations 45005 and 45142 combined.

4.2. Hyperparameter tuning

As described above, the LSTM structure features a sequence of
𝑁 neurons per layer and 𝑇 wind observations (Fig. 10). This neu-
al network was trained using a mini-batch size of 𝐵, and RMSProp

optimization with a learning rate of 𝐿. We therefore have four hy-
perparameters for this model, namely 𝑁 , 𝑇 , 𝐵, and 𝐿, which were
etermined using derivative-free optimization. Similar to the approach
or the XGBoost model, a direct search strategy was followed: The
earch space was defined as 𝑁 = [12, 14, 16, 18, 20, 22, 24], 𝑇 = [3, 6, 9],
𝐵 = [16, 32, 64, 128] and 𝐿 = [0.001, 0.01, 0.1]. For each hyperparameter
combination, the LSTM model was trained for a maximum of 100
epochs, and the epoch at which the minimum validation partition
MAPE was found was recorded. This minimum represents a balance
between bias reduction and variance (overfitting) for that hyperparam-
eter combination. Moving through the search space, the combination
for which the minimum validation set MAPE was found is identified
as the optimum set of hyperparameters. Tables 3 and 4 show the
results of this optimization for different dimensions of the search space.
Table 3 shows a preference in the optimization towards using an input
wind history of 6 time steps, i.e. 𝑡 = [−15, −12, −9, −6, −3, 0], in
particular when using slower learning rates. Furthermore, the slowest
learning rate of 𝐿 = 0.001 consistently yields the best results. Table 4
shows that the optimization is not sensitive to mini-batch size. This is
because for a larger mini-batch size, the optimization responded by
using more epochs to reach a minimum MAPE, and vice versa. An
optimal combination of 𝑁 = 16, 𝑇 = 6, 𝐵 = 32 and 𝐿 = 0.001 was found,
which is identified in bold in both tables. This model training ran on a
CPU (Intel® Xeon® CPU E2176M @ 2.70 GHz) for about 3.5 min per
hyperparameter combination.

Fig. 11 shows the training of this model in terms of aggregate MAPE
over both stations 45005 and 45142 on the training and validation
partitions, up to the optimal epoch. It can be seen that the error of
both the training and validation partitions reduce rapidly during the
first few epochs. Over the next decades of epochs the training partition
score reduces steadily. The score of the validation set also reduces on
average, although not as smoothly, considering the smaller sample size
for the computation of these metrics. The MAPE of the validation set
reaches a 3-point moving average minimum at 63 epochs, suggesting
that the model is not overfit. After 63 epochs, the model achieves an
aggregate MAPE = 15.995% over both stations for the training partition
(years 1994–2013), an MAPE = 14.770% for the validation partition
(years 2014–2015), and an MAPE = 15.328% for the unseen test
partition (years 2016–2017). We can therefore conclude that the LSTM

model is indeed not overfit, and seems to generalize well, yielding

10
Table 3
Hyperparameter tuning results on the validation partition (MAPE) for LSTM along the
dimensions of 𝑁 = neurons per layer, 𝑇 = number of lags, and 𝐿 = learning rate, for
a fixed optimal mini-batch size 𝐵 = 32. Optimal settings shown in bold.
𝑁 𝑇 L

0.001 0.01 0.1

12 3 15.384 16.040 24.731
6 14.895 15.873 25.302
9 14.982 15.777 25.740

14 3 15.435 15.832 23.430
6 14.864 15.746 26.915
9 15.037 15.984 25.734

16 3 15.370 15.720 27.050
6 14.770 15.914 27.906
9 15.194 16.082 27.530

18 3 15.358 15.829 57.368
6 14.962 16.074 40.982
9 15.473 16.092 26.750

20 3 15.360 15.858 38.891
6 14.968 15.943 54.723
9 15.220 16.019 32.349

22 3 15.403 16.067 26.732
6 15.014 15.857 39.388
9 15.181 16.099 31.291

24 3 15.349 15.911 27.463
6 14.937 15.933 33.704
9 15.055 16.129 30.833

Table 4
Hyperparameter tuning results on the validation partition (MAPE) for LSTM along the
dimensions of 𝑁 = neurons per layer, 𝑇 = number of lags, and 𝐵 = mini-batch size,
or a fixed optimal learning rate 𝐿 = 0.001. Optimal settings shown in bold.
𝑁 𝑇 B

16 32 64 128

12 3 15.424 15.384 15.449 37.192
6 14.851 14.895 14.994 14.866
9 15.088 14.982 15.078 38.033

14 3 15.485 15.435 15.448 15.389
6 14.878 14.864 15.028 14.854
9 15.034 15.037 15.102 15.121

16 3 15.388 15.370 15.219 15.482
6 14.989 14.770 14.985 14.863
9 15.058 15.194 15.217 15.094

18 3 15.489 15.358 15.496 15.434
6 15.056 14.962 15.008 14.917
9 15.335 15.473 15.244 15.207

20 3 15.338 15.360 15.513 15.416
6 15.133 14.968 14.946 14.898
9 15.113 15.220 15.295 15.093

22 3 15.419 15.403 15.408 15.323
6 15.077 15.014 38.123 14.776
9 15.082 15.181 15.229 15.146

24 3 15.470 15.349 15.315 38.215
6 14.971 14.937 36.862 14.932
9 15.331 15.055 15.231 15.111

somewhat better results for the unseen test partition than the training
and validation partition.

4.3. LSTM results

Figs. 12 and 13 show the predicted LSTM significant wave height
and peak period, and their error statistics, for the unseen test partition
(years 2016–2017). The LSTM model provides a good representation
of the observed 𝐻 and 𝑇𝑝 in both the low- and high energy regimes.
Importantly, the LSTM model captures all major wave events, including
the storm peaks. At the upwind station 45005, the LSTM model yields
an MAE of 0.103 m in 𝐻 and 0.326 s in 𝑇 , with maximum absolute
𝑝
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Fig. 12. Time series of the LSTM significant wave heights predictions and error statistics for the unseen test partition (2016–2017). Top panels: NDBC 45005; Bottom panels:
NDBC 45142.
errors of 0.885 m and 2.487 s respectively. This corresponds to MAPE
values of 23.421% in 𝐻 and 9.072 s in 𝑇𝑝. As was seen for the XGBoost
model above, errors tend to be larger at the downwind station 45142:
an MAE of 0.125 m in 𝐻 and 0.499 s in 𝑇𝑝, with maximum absolute
rrors of 1.906 m and 3.831 s respectively. This corresponds to MAPE
alues of 30.775% in 𝐻 and 13.614% in 𝑇𝑝. The trained LSTM needed

only 0.24 s on 1 CPU to perform this 2-year prediction.

5. WAVEWATCH III spectral model

5.1. Model description

The unstructured mesh used for the WW3 runs is shown in Fig. 14,
which was generated using Aquaveo’s Surface-Water-Modeling System
(SMS). The grid size distribution was configured as a function of the
3 arc-second bathymetry data from the National Centers for Environ-
mental Information (NCEI). The model bathymetry was obtained by
interpolating the observed bathymetry onto each unstructured grid
node using the inverse distance method. High-resolution NOAA coast-
line data was applied to delineate the land boundary. The resulting
mesh is composed of 11 509 triangular elements and 6 106 nodes in
the horizontal. The resolution varies from approximately 100 m near
11
the shore to 2.5 km offshore. The model has distribution referenced to
the Great Lakes low water datum of 173.5 m.

Surface wind observations were interpolated to create hourly grid-
ded surface meteorological analyses of wind. The observations are from
the Great Lakes Weather Data and Marine Observations (GLERL, 2020),
which includes coastal and offshore meteorological stations. These data
were corrected for over-water conditions and interpolated, along with
available in-lake buoys, to the model grid. Fig. 15 shows scatter and
Quantile–Quantile (Q–Q) plots comparing the observed winds with the
analysis winds used in WW3. From the Q–Q plots we can see that the
analysis wind fields match the observation at 45005 well, although they
slightly underestimate values greater than 10 m/s. Conversely, they
slightly overestimate the observations at 45142 during strong events of
around 15 m/s. We can therefore conclude that the wind fields applied
to WW3 have a generally high accuracy, and only a limited bias.

The WW3 simulation starts at 12:00 GMT on 01 January 2016.
Model results are output on an hourly interval at the same time step
of the buoy data. The model took 24 h on 60 CPUs (Intel® Xeon® CPU
E5-2603 v4 @1.70 GHz) to complete the prediction for 2016–2017.
The model settings were chosen to match those of the current NOAA
operational model for the Great Lakes (Alves et al., 2014), which are:
Wind input and dissipation source terms based on Ardhuin et al. (2010).
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Fig. 13. Time series of the LSTM peak wave period predictions and error statistics for the unseen test partition (2016–2017). Top panels: NDBC 45005; Bottom panels: NDBC
45142.
Fig. 14. Unstructured grid of the Lake Erie used for WW3. Green dots are the buoy stations of 45005 and 45142.
Flux computation included in the model source terms; The third-order
propagation scheme with Tolman (2002) averaging technique; Gener-
alized Multiple DIA (GMD) nonlinear interaction (Tolman, 2013); The
empirical, linear JONSWAP parameterization of bottom friction (Has-
selmann et al., 1973); Depth-induced breaking according to Battjes and
Janssen (1978); Linear time interpolation for wind interpolation, and
approximately linear speed interpolation for wind space interpolation;
12
No triad interactions used; No bottom scattering used; No supplemental
source term used. The model was compiled with NetCDF version 4
as a stand-alone program. The model used Message Passing Interface
(MPI) with a distributed memory. For more details, refer to Alves et al.
(2014). We used this model configuration as a benchmark, and no
additional tuning was done.
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Fig. 15. Top: Scatterplots of 𝑈10 wind used for WW3 against wind observations at NDBC 45005 (left) and 45142 (right) for the test partition (2016–2017). Colors indicate the
elative data density. Bottom: Q–Q plots of the same data.
.2. WW3 results

The WW3 model was implemented to predict significant wave
eight and peak wave period for 2016–2017. Fig. 16 shows the time
eries of modeled and observed significant wave height. For station
5005, a MAE of 0.082 m and a maximum absolute error of 0.873 m
ere found. For station 45142, the model yielded an MAE of 0.119 m,
nd a maximum absolute error of 1.100 m. This corresponds to MAPE
alues of 15.325% and 21.008% for the two stations respectively.
ig. 17 shows the corresponding results for peak wave period. At
tation 45005, a MAE of 0.408 s and a maximum absolute error of
.604 s were found, and at station 45142 a MAE of 0.653 s and a
aximum absolute error of 5.864 s were found. The MAPE values are
2.506% and 19.318% for the two stations respectively. These figures
how that WW3 tends to underestimate wave height and period peaks
uring strong wind events (spikes on the figures). We note that the
lightly underestimated model winds at station 45005 during strong
ind events (Fig. 15, left) may be the cause of the underestimation
f these peaks. However, this cannot explain the behavior at the
ownwind station 45142, where the model winds slightly overestimate
bservations during strong wind events (Fig. 15, right), while the
ave height and period peaks are still underestimated. We tested an
13
alternative wind data set from an operational weather forecast model
by the High Resolution Rapid Refresh (HRRR, Benjamin et al., 2016a,b)
in WW3 simulations, and the issue with underestimating the peak
significant wave height still persisted and the maximum absolute errors
were slightly worse than the results with the interpolated winds from
the observations.

6. Model intercomparison

6.1. Significant wave height

Fig. 18 compares the performance of the two ML models and WW3
in terms of scatter plots of significant wave height at stations 45005 and
45142 for the test partition (2016–2017). These results are summarized
in Table 5. In addition to the MAPE and MAE discussed above, we
also consider the Scatter Index (SI), Correlation Coefficient (CC), bias,
relative bias, and regression fit.

The XGBoost model (Fig. 18, top row) displays a tight grouping
around the line of perfect agreement, in particular in the lower range
of wave heights, where the data density is the highest (warmer colors).
We see a low scatter (MAE = 0.074 m; MAPE = 15.61%; SI = 0.160;
CC = 0.958) and small overall bias (−0.011 m or −1.81%) against the
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Fig. 16. Time series of the WW3 significant wave heights predictions and error statistics for the unseen test partition (2016–2017). Top panels: NDBC 45005; Bottom panels:
NDBC 45142.
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observations at the upwind station 45005. To assess the performance
during storm conditions, the bias is also computed over observations
greater than the 95th percentile (diamond markers, score included in
parentheses), which also displays a small bias (−0.042 m or −2.56%).
The regression fit through the results indicate a slope close to unity
(0.974), and an intercept of close to zero (0.005 m). At the downwind
station 45 142, the scatter increases (MAE = 0.100 m; MAPE = 21.89%;
SI = 0.220; CC = 0.970), and the overall bias increases to −0.063 m
(−9.28%). We see a comparable bias of −0.239 m (−10.61%) over the
data points greater than the 95th percentile. This underprediction of
𝐻 is reflected in the lower regression slope of 0.895. We note that the
larger errors at the downwind station 45142 compared to the upwind
45005 is presumably due to the added complexity of its longer fetch
over this elongated lake, which is a nonlinear function of the wind
direction (refer Figs. 2 and 7).

The LSTM model (Fig. 18, center row) shows similar, but weaker
performance than the XGBoost model in terms of significant wave
height. At the upwind station 45005, the scatter is larger (MAE = 0.103
m; MAPE = 23.42%; SI = 0.221; CC = 0.931), and the overall bias
(−0.037 m or −5.91%) and the bias of values greater than the 95th
percentile (−0.054 m or −3.34%) are somewhat higher. The regression
slope is close to unity (0.989), and the intercept close to zero (−0.030
14
m). At the downwind station 45142, the scatter increases relative to
XGBoost and WW3 (MAE = 0.125 m; MAPE 30.78%; SI = 0.269; CC =
0.948), and the overall bias increases to −0.059 m (−8.71%). However,
or values greater than the 95th percentile, the negative bias is the
owest of the three models at −0.201 m (−8.93%). This underestimation
s reflected in the regression slope of 0.909, which is nonetheless the
losest to unity of the three models.

The performance of WW3 (Fig. 18, bottom row) in terms of scatter
s slightly poorer than XGBoost and better than LSTM, both at station
5005 (MAE = 0.082 m; MAPE = 15.33%; SI = 0.180; CC = 0.950)

and 45142 (MAE = 0.119 m; MAPE = 21.01%; SI = 0.241; CC =
0.963). In terms of overall bias, WW3 performs similar or better than
the two ML models, with values of −0.024 m (−3.91%) and −0.002
m (−0.33%) at stations 45005 and 45142 respectively. However, these
overall bias scores obscure a pattern of underestimation in the upper
range of wave heights. The bias values over values greater than the
95th percentile are significantly negative at −0.191 m (−11.76%) and
−0.318 m (−14.15%), at stations 45005 and 45142 respectively. This
underestimation is reflected in the poorer regression slopes of 0.834
and 0.769 for these stations respectively. Conversely, an overestimation
in the lower ranges can be seen from the regression intercepts, which
at 0.079 m and 0.135 m indicates a marked deviation from zero.
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Fig. 17. Time series of the WW3 peak wave period predictions and error statistics for the unseen test partition (2016–2017). Top panels: NDBC 45005; Bottom panels: NDBC
45142.
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Fig. 19 presents the corresponding Q–Q plots in order to compare
the distributions of the simulated significant wave heights to those of
the observations. In particular, the upper quantiles (right-hand tail of
each distribution) represent the behavior of the modeled storm peaks.
The distributions of the XGBoost and LSTM model at stations 45005
and 45142 follow those of the observations closely. However, some
negative bias can be seen towards higher values at 45142, reflecting a
tendency to underestimate storm peaks. This result might be surprising,
considering that ML models such as neural networks are typically
unbiased when properly trained. The finding that the lower quantiles
agree better with observations in these ML models can be explained
by the fact that the majority of the available training data cover this
lower significant wave height range (75th percentile = 0.8 m, see
ig. 7). This concentration of data within the lower wave height range
an also be seen from the color mapping in Fig. 18. Improved model
itting at these upper quantiles can be obtained by including more
torm peak observations in the training set, or alternatively by using
eighted samples with greater weights at these higher values (not

hown). Furthermore, Mahjoobi and Etemad-Shahidi (2008), Prahlada
nd Deka (2015) and Dixit and Londhe (2016) suggest dividing the data
nto multiple parts, and training a separate model on the higher wave
eight partition. This is conceptually similar to threshold autoregressive

odels (TAR) in time series statistics (e.g. Shumway and Stoffer, 2017). t

15
By comparison, the quantiles of the WW3 model have a clear low
ias compared to observations, which becomes progressively larger
ith increasing significant wave heights. This indicates that the WW3

esults are left-skewed compared to the distribution of the observed
ave heights, i.e. that the extremes (storm peaks) are underpredicted
y the model. Cavaleri (2009) has identified the underprediction of
torm peaks as the most challenging aspect of physics-based wave mod-
ls. Due to the difficulty of observing detailed wave dynamics under ex-
reme conditions, the theories and empirical expressions incorporated
nto these models are often based on moderate storm conditions, and
ay not include potential nonlinear effects occurring during extreme

vents. As a result, these models can have difficulty in generalizing to
uch conditions.

.2. Peak wave period

Fig. 20 compares the performance of the two ML models and WW3
n terms of scatter plots of peak wave period at stations 45005 and
5142 for the test partition (2016–2017). These results are summarized
n Table 6.

The XGBoost model (Fig. 20, top row) yields the lowest scatter of

he three models considered, although values do increase moving from
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Fig. 18. Scatterplots of significant wave height for XGBoost (top), LSTM (center), and WW3 (bottom) against observations at NDBC 45005 (left) and 45142 (right) for the test
artition (years 2016–2017). Colors indicate the relative data density. The line of perfect agreement in black dotted. Linear regression of observations vs model in red dashed.
ias value in parentheses computed over data greater than the 95th percentile (diamond markers).
C
s
p
a
i
w

p
t

he upwind station 45005 (MAE = 0.309 s; MAPE = 8.32%; SI = 0.116;
CC = 0.866) to the downwind station 45142 (MAE = 0.516 s; MAPE =
13.45%; SI = 0.172; CC = 0.835). Overall bias levels remain equally
low between the two stations, at −0.033 s (−0.87%) and −0.061 s
(−1.47%) respectively, although they become more prominently nega-
tive for values greater than the 95th percentile (parentheses), at −0.574
s (−9.62%) and −0.690 s (−10.13%) respectively. As a result, the
regression slopes are relatively low at 0.730 and 0.707 for stations
45005 and 45142 respectively.

The LSTM model (Fig. 20, center row) yields scatter results that are
somewhat larger than those of XGBoost, again increasing from station
45005 (MAE = 0.326 s; MAPE = 9.07%; SI = 0.120; CC = 0.860) to the
16
downwind station 45 142 (MAE = 0.499 s; MAPE = 13.61%; SI = 0.166;
C = 0.859). However, the LSTM model captures the peak periods of
torm waves better, so that the biases over values greater than the 95th
ercentile are the lowest of the three models, with −0.482 s (−8.08%)
nd −0.538 s (−7.89%) at stations 45005 and 45142 respectively. This
s reflected in the regression slopes of 0.758 and 0.826 respectively,
hich are the best of the three models.

By comparison, the WW3 model (Fig. 20, bottom row) yields the
oorest results on all metrics considered. The scatter results are larger
han both the XGBoost and LSTM, both at station 45005 (MAE = 0.408

s; MAPE = 12.51%; SI = 0.147; CC = 0.865) and 45142 (MAE = 0.653
s; MAPE = 19.32%; SI = 0.216; CC = 0.812). WW3 displays overall
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Fig. 19. Q–Q plots of observed and modeled significant wave height for the test partition (years 2016–2017). The models are XGBoost (top), LSTM (center), and WW3 (bottom)
at NDBC 45005 (left) and 45142 (right).
negative biases of −0.339 s (−9.02%) and −0.474 s (−11.51%) at 45005
and 45142 respectively, with particularly large values of −0.929 s
(−15.59%) and −1.342 s (19.68%), respectively, for values greater than
the 95th percentile. This results in low regression slope values at station
45005 (0.744) and particularly at station 45142 (0.626).

This general underprediction of peak wave periods by WW3 is
highlighted in the Q–Q plots (Fig. 21), where its quantiles can be
seen to be below the line of perfect agreement in both the mid- and
upper ranges. By contrast, the XGBoost and LSTM models display good
distributions throughout. It can thus be concluded that these two ML
models yield a clear improvement in the prediction of peak wave period
at the two stations considered.
17
6.3. Model ensemble

In the model comparisons above, we have seen an overall best
performance of the XGBoost compared to the other two models. How-
ever, we have also seen that the LSTM yielded the best performance
in terms of values greater that the 95th percentile (storm peaks) in
both significant wave height and peak wave period. Therefore, follow-
ing Pirhooshyaran et al. (2020) we investigate the application of an
ensemble of these three models, in order to assess if their combined
performance can improve on those of the individual members.

Fig. 22 and the last two columns of Tables 5 and 6 show the results
of the ensemble mean of the three component models. The top row
of Fig. 22 shows that the ensemble mean has a low scatter and low
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Fig. 20. Scatterplots of peak wave period for XGBoost (top), LSTM (center), and WW3 (bottom) against observations at NDBC 45005 (left) and 45142 (right) for the test partition
(years 2016–2017). Colors indicate the relative data density, and observations were plotted with a small random variation (jitter) to distinguish individual data points. The line
of perfect agreement in black dotted. Linear regression of observations vs model in red dashed. Bias value in parentheses computed over data greater than the 95th percentile
(diamond markers).
overall bias. The scatter values at stations 45005 (MAE = 0.068 m;
MAPE = 13.33%; SI = 0.151; CC = 0.964) and 45142 (MAE = 0.090
m; MAPE = 17.27%; SI = 0.195; CC = 0.977) are the lowest of the
three component models considered (see also Table 5). By comparison,
the bias results, in particular those of the values greater that the 95th
percentile (parentheses), are an improvement over those of WW3, but
they fall short of the improvements seen in the XGBoost and LSTM
members. A similar outcome is seen for the peak wave period (Fig. 22,
bottom row). The scatter results of the ensemble mean improve on
those of the individual members, both at station 45005 (MAE = 0.287
s; MAPE = 7.96%; SI = 0.108; CC = 0.904) and station 45142 (MAE
= 0.482 s; MAPE = 12.98%; SI = 0.157; CC = 0.885). However, the
ensemble mean bias (both overall and values greater that the 95th
18
percentile), performs better than WW3, but worse than the stronger
ensemble members (LSTM and XGBoost).

The Q–Q plots in Fig. 23 confirm these bias results of the ensemble
mean. For the significant wave height (top row), we see that the
distribution has improved relative to that of WW3 (compare Fig. 19,
bottom row), but still represents an underestimation relative to those of
the LSTM and XGBoost (Fig. 19, center and top rows). Similarly, for the
peak wave period (Fig. 23, bottom row), the ensemble mean improves
on the results of WW3 (compare Fig. 21, bottom row), but performs
poorer than the LSTM and XGBoost component models (Fig. 21, center
and top rows). We can therefore conclude that the ensemble mean
generally improves the component model performance in terms of
scatter, but does not yield the best results in terms of correcting the
negative bias during storm peaks.
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Fig. 21. Q–Q plots of observed and modeled peak wave period for the test partition (years 2016–2017). The models are XGBoost (top), LSTM (center), and WW3 (bottom) at
NDBC 45005 (left) and 45142 (right).
7. Model sensitivity

In the previous section, we showed that advanced ML models can be
effective in predicting significant wave height and peak wave period at
point locations. However, it is well-known that such data-driven models
are limited in their generality to the data sets on which they were
trained. Here we investigate the models’ sensitivity to data set size.

To investigate the effect of data set size, we conducted another
training for the XGBoost and LSTM models in which we limited the
training partition size to only 5 years (2011–2015), using the trained
models to predict significant wave height for the same test period as
before (2016–2017). With this retrained XGBoost model, the MAE for
station 45005 is 0.080 m, with a maximum absolute error of 0.910
m. For station 45142, the MAE is 0.101 m with a maximum absolute
19
error of 1.036 m. Fig. 24 shows that the original model trained with
15 years of data performs somewhat better than the one trained with
only 5 years of data. However, the performance of the model fit on the
longer training period is not much better, which means that it is close
to saturation on the training data after about 5 years. This is typical for
a tree-based model—it builds up enough tree representations when it
sees enough samples, most importantly, the largest and the smallest.

For comparison, Fig. 25 shows the results of the LSTM model that
was trained on the shorter period of 5 years. With this retrained model,
the MAE for station 45005 is 0.090 m, with a maximum absolute error
of 0.887 m. For station 45142, the MAE is 0.147 m with a maximum
absolute error of 1.764 m. These MAE results are better than those of
the LSTM trained on the 15-year data set for the upwind station 45005,
but worse for the more geographically complex downwind station
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Fig. 22. Scatterplots of ensemble mean significant wave height (top) and peak wave period (bottom) against observations at NDBC 45005 (left) and 45142 (right) for the test
artition (years 2016–2017). Colors indicate the relative data density, and peak wave period observations were plotted with a small random variation (jitter) to distinguish
ndividual data points. The line of perfect agreement in black dotted. Linear regression of observations vs model in red dashed. Bias value in parentheses computed over data
reater than the 95th percentile (diamond markers).
able 5
omparison of model performance for significant wave height at the buoy stations
5005 and 45142. Included are: Mean Absolute Error (MAE), maximum absolute error
Max_AE), Mean Absolute Percentage Error (MAPE), Scatter Index (SI), bias, bias >95th

percentile (Bias_95), relative bias (in %), relative bias >95th percentile (Bias_95, in %),
slope, intercept, and Correlation Coefficient (CC). Best result per metric and buoy shown
in bold.

Metric XGBoost LSTM WW3 Ens mean

45005 45142 45005 45142 45005 45142 45005 45142

MAE (m) 0.074 0.100 0.103 0.125 0.082 0.119 0.068 0.090
Max_AE (m) 0.853 1.045 0.885 1.906 0.873 1.100 0.826 1.015
MAPE (%) 15.611 22.890 23.421 30.775 15.325 21.008 13.331 17.270
SI (–) 0.160 0.220 0.221 0.269 0.180 0.241 0.151 0.195
Bias (m) −0.011 −0.063 −0.037 −0.059 −0.024 −0.002 −0.024 −0.041
Bias_95 (m) −0.042 −0.239 −0.054 −0.201 −0.191 −0.318 −0.095 −0.253
Bias (%) −1.81 −9.28 −5.91 −8.71 −3.91 −0.33 −3.88 −6.11
Bias_95 (%) −2.56 −10.61 −3.34 −8.93 −11.76 −14.15 −5.89 −11.23
Slope (–) 0.974 0.895 0.989 0.909 0.834 0.796 0.933 0.867
Intercept (m) 0.005 0.008 −0.030 0.003 0.079 0.135 0.018 0.049
CC (–) 0.958 0.970 0.931 0.948 0.950 0.963 0.964 0.977

45142. We can therefore conclude that unlike the XGBoost model, the
additional data used in the original LSTM training did improve the
quality of the model. Thus, XGBoost would be a better choice for this
wave modeling application if only a few years of training data would
be available.
20
Table 6
Comparison of model performance for peak wave period at the buoy stations 45005 and
45142. Included are: Mean Absolute Error (MAE), maximum absolute error (Max_AE),
Mean Absolute Percentage Error (MAPE), Scatter Index (SI), bias, bias >95th percentile
(Bias_95), relative bias (in %), relative bias >95th percentile (Bias_95, in %), slope,
intercept, and Correlation Coefficient (CC). Best result per metric and buoy shown in
bold.

Metric XGBoost LSTM WW3 Ens mean

45005 45142 45005 45142 45005 45142 45005 45142

MAE (s) 0.309 0.516 0.326 0.499 0.408 0.653 0.287 0.482
Max_AE (s) 2.613 3.774 2.487 3.831 2.604 5.864 2.510 3.981
MAPE (%) 8.322 13.445 9.072 13.614 12.506 19.318 7.959 12.975
SI (–) 0.116 0.172 0.120 0.166 0.147 0.216 0.108 0.157
Bias (s) −0.033 −0.061 −0.078 −0.143 −0.339 −0.474 −0.150 −0.226
Bias_95 (s) −0.574 −0.690 −0.482 −0.538 −0.929 −1.342 −0.661 −0.857
Bias (%) −0.87 −1.47 −2.06 −3.47 −9.02 −11.51 −3.98 −5.48
Bias_95 (%) −9.62 −10.13 −8.08 −7.89 −15.59 −19.68 −11.10 −12.57
Slope (–) 0.730 0.707 0.758 0.826 0.744 0.626 0.744 0.720
Intercept (s) 0.983 1.146 0.832 0.573 0.622 1.066 0.812 0.928
CC (–) 0.866 0.835 0.860 0.859 0.865 0.812 0.904 0.885

8. Conclusions

In this study, ML methods based on XGBoost and LSTM were applied
to wind-wave prediction in Lake Erie, and were compared to the
physics-based spectral wave model WW3. This enclosed basin, with a
wind climate directed along its major axis, represents near-idealized
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Fig. 23. Q–Q plots of observed and ensemble mean significant wave height (top) and peak wave period (bottom) for the test partition (years 2016–2017). Results for NDBC 45005
left) and 45142 (right).
Fig. 24. Mean absolute error in significant wave height of XGBoost for two training
periods of different lengths: 5 years (2011–2015) versus 15 years (1994–2015).

conditions under which to compare the modeling of wind-wave growth
by these models. Buoy data at the upwind NDBC 45005 and downwind
NDBC 45142 from 1994 to 2017 were processed for model training,
validation and testing. We used 1994–2013 data for training the model,
applying observed 𝑈10 wind velocity as model input, and observed
significant wave height and peak wave period as the target variables.
21
Fig. 25. Mean absolute error in significant wave height of LSTM for two training
periods of different lengths: 5 years (2011–2015) versus 15 years (1994–2015).

Data from 2014–2015 was applied for model validation, and we subse-
quently used the trained models to evaluate significant wave height and
peak period for the unseen test period of 2016–2017. From the results
of this study, the following conclusions can be drawn:

1. The physics-based WW3 model was found to perform well in
terms of significant wave height, with a low overall bias and
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a low scatter, expressed in a Mean Absolute Percentage Error
(MAPE) of 15.33% at station 45005 and 21.01% at station
45142. However, WW3 tends to underestimate wave height
during storm events, expressed in relative biases of −11.76% and
−14.15% at stations 45005 and 45142 respectively, computed
over wave heights exceeding the 95th percentile. The scatter in
peak wave period was acceptable, with a MAPE of 12.51% and
19.32% at stations 45005 and 45142 respectively. However, the
overall relative bias at these stations was quite large, namely
−9.02% and −11.51% respectively, increasing to −15.59% and
−19.68% during storm peaks.

2. The trained XGBoost model yields significant wave height pre-
dictions with comparable scatter to WW3, and extreme values
are less underestimated, with a relative bias of −2.56% at sta-
tion 45005 and −10.61% at 45142 for values above the 95th
percentile. Furthermore, the scatter and bias in peak wave period
are lower than for WW3, with overall relative bias values of
−0.87% and −1.47% at 45005 and 45142 respectively, and
values of 9.62% and −10.13% during storm events.

3. The trained LSTM model yields significant wave height pre-
dictions with larger scatter and overall bias than WW3 and
XGBoost. However, it yields improved relative bias during storm
conditions compared to WW3, with values of −3.34% and
−8.93% at stations 45005 and 45142 respectively for values
exceeding the 95th percentile. For peak wave period, it yields the
lowest relative bias of the three models during storm conditions,
namely −8.08% and −7.89% for stations 45005 and 45142
respectively. We conclude that for such extreme events, fetch
and duration effects are import to incorporate, done here via
the LSTM’s long- and short-term memories.

4. Ensembling the three studied models was found to be a good
strategy, since it combines some of their strengths: The overall
scatter of the ensemble mean was lower than any of the com-
ponent models, with MAPE values of 13.33% and 17.27% in
significant wave height, and MAPE values of 7.96% and 12.98%
in peak wave period at stations 45005 and 45142 respectively.
However, the bias of the ensemble mean fell short of the lowest
values amongst the component models: for significant wave
height during storm events it yielded relative biases of −5.89%
and −11.23% at stations 45005 and 45142 respectively, and
for peak wave period during storm events it yielded relative
biases −11.10% and −12.57% respectively, which are greater
than found for either XGBoost or LSTM.

5. A benefit of the tree-based XGBoost model is that it can also
perform well on a smaller set of training data. Training our
model on only 5 years of data yields test partition results that are
comparable to those found after training the model with the full
15 years of training data. This suggests that the XGBoost model
fitting has become saturated after processing about 5 years of
training examples.

6. The ML models evaluated here represent a significant reduction
in computational times compared to traditional physics-based
spectral wave models. To complete the 2016–2017 prediction
on the same computing environment, WW3 needed 24 h with
60 CPUs, whereas the trained XGBoost needed only 0.03 s for
predicting with 1 CPU, and the trained LSTM required 0.24 s on
1 CPU.

It should be mentioned, however, that the XGBoost and LSTM
models built here output only significant wave height and peak pe-
riod, and only at the point locations for which they were trained. By
contrast, WW3 is capable of outputting complete fields of significant
wave height, wave period, wave direction, and the full directional
wave spectrum. Nonetheless, James et al. (2018) have shown that ML
approaches as studied here can readily be extended to outputting fields
of wave variables, if sufficient area-covering training data would be
22
available. These authors show how significant wave height results from
physics-based models such as SWAN can be used for this purpose.
However, biases from these physics-based models, such as those shown
in Figs. 18–21, would need to be removed before using their output as
training data for the ML models. In this regard, the reader is reminded
that the comparisons presented here were made with respect to the
operational WW3 model for the Great Lakes as benchmark. It is possible
that the performance of the physics-based WW3 could be improved for
Lake Erie with a local tuning using the data utilized for training our
ML models.

We note furthermore that even though this study was conducted
in an enclosed basin to isolate the process of wind-wave growth, the
XGBoost and LSTM models evaluated here are equally applicable to
open coast and offshore conditions. For such more generalized con-
ditions, currents and offshore wave boundary conditions would have
to be included as predictors. For shallow water coastal applications,
water level variation from tides and surge should also be included as
predictors.
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